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Abstract. Rings are generalization of the integers Z, and fields are general-

ization of the rational number Q.
Ring theory gives us insight into the algebra of these sets, but also readily

applies to polynomial rings, which gives us deeper insight into the structure of

the reals and the complex numbers. This is the aspect of ring theory we wish
to pursue.

1. Rings

Definition 1. A ring is a set R together with a pair of binary operations

+ : R×R→ R and · : R×R→ R

such that

(R1) a+ b = b+ a for every a, b ∈ R;
(R2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ R;
(R3) there exists 0 ∈ R such that a+ 0 = a for every a ∈ R;
(R4) for every a ∈ R there exists −a ∈ R such that a+ (−a) = 0;
(R5) (ab)c = a(bc) for every a, b, c ∈ R;
(R6) there exists 1 ∈ R such that a · 1 = 1 · a = a for every a ∈ R;
(R7) a(b+ c) = ab+ ac for every a, b, c ∈ R;
(R8) (a+ b)c = ac+ bc for every a, b, c ∈ R.

A commutative ring is a ring R which additionally satifies

(R9) ab = ba or every a, b ∈ R.

The standard rules for additive and multiplicative notation are in force.
The additive identity is denoted by 0 and the additive inverse of a is denoted

−a. If n ∈ Z, then na = 0 if n = 0, na = a + · · · + a (n times) if n > 0, and
na = (−a) + · · ·+ (−a) (n times) if n < 0.

The multiplicative identity is denoted by 1 and the multiplicative inverse of a
(if it exists) is denoted by a−1. If n ∈ N, then an = 1 if n = 0 and an = a · · · · · a
(n times) if n > 0. If a has a multiplicative inverse and n < 0, then an = (a−1)−n.
The notation 00 is undefined. The product symbol · may be dropped, so that
multiplication is denoted by juxtaposition.

From the theory of binary operations that has been studied prior to groups, we
know that the identities are unique, as are inverses when they exist. It should be
noted that a ring is an abelian group under addition.
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Problem 1. Let R be a ring and let a ∈ R. Show that a · 0 = 0 · a = 0.

Solution. First this first problem, we write all the details. As we proceed, we leave
more details to the reader.

a · 0 = a · (0 + 0) by (R3)

= a · 0 + a · 0 by (R7).

By (R4), −a · 0 exists, so

0 = a · 0 +−(a · 0)) by (R4)

= (a · 0 + a · 0) +−(a · 0) adding −a · 0 to both sides

= a · 0 + (a · 0− a · 0) by (R2)

= a · 0 + 0 by (R4)

= a · 0 by (R3)

That is, a · 0 = 0. �

Problem 2. Let R be a ring and let a, b ∈ R. Show that (−a)b = a(−b) = −(ab).

Solution. By Problem 1, zero times anything is zero. Now we use uniqueness of
inverses: add ab to (−a)b to get 0:

ab+ (−a)b = (a+ (−a))b = 0 · b = 0,

so since the inverse of ab is unique, it must be (−a)b. That is, (−a)b = −(ab). The
second equality is similar. �

2. Examples of Rings

Example 1. Let R = {0}. Define 0 + 0 = 0 and 0 · 0 = 0. Then R is a ring, called
the zero ring .

Example 2. The following sets of numbers are rings under their standard addition
and multiplication: (a) Z = {. . . ,−2,−1, 0, 1, 2, . . . }, the integers;
(b) Q = {ab | a, b ∈ Z}, the rational numbers;
(c) R, the real numbers;
(d) C = {a+ ib | a, b ∈ R and i2 = −1}, the complex numbers.

Example 3. Let R and S be rings. Define addition and multiplication on their
cartesian product R× S componentwise by

• (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2);
• (r1, s1) · (r2, s2) = (r1s1, r2s2).

Then R× S is a ring, called the product ring of R and S.

Example 4. Let X be a set and let R be a commutative ring. Let F(X,R) denote
the set of all functions from X to R. Define addition and multiplication of functions
in F(X,R) pointwise by

• (f + g)(x) = f(x) + g(x);
• (f · g)(x) = f(x)g(x).

Then F(X,R) is a ring, called the ring of functions from X to R.

Example 5. Let R be a commutative ring, and let Mn(R) denote the set of all n×n
matrices with entries from R, together with matrix addition and multiplication.
Then Mn(R) is a ring. This is the main example of a noncommutative ring.
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3. Entire and Invertible Elements

Definition 2. Let R be a commutative ring and let a ∈ R.
We say that a is entire if ab = 0⇒ b = 0 for every b ∈ R.
We say that a is cancellable if ab = ac⇒ b = c for every b, c ∈ R.
We say that a is invertible if there exists an element a−1 ∈ R such that aa−1 = 1.

Nonentire, nonzero elements are often called zero divisors.

Problem 3. Let R be a commutative ring and let a ∈ R. Show that a is entire if
and only if a is cancellable.

Solution. To show an if and only if statement, it is often best to show each direction
independently.

(⇒) Suppose that a is entire. Let b, c ∈ R and suppose that ab = ac. We wish to
show that b = c. Subtract ac from both sides to get ab−ac = 0. By the distributive
law, a(b− c) = 0. Since a is entire, this implies that b− c = 0, so b = c. Thus a is
cancellable

(⇐) Suppose that a is cancellable. Let b ∈ R and suppose that ab = 0. Then
ab = a · 0, so by cancellation, b = 0. Thus a is entire. �

Problem 4. Let R be a commutative ring and let a ∈ R. Show that if a is
invertible, then a is entire.

Solution. Suppose that a is invertible. Let b ∈ R and suppose that ab = 0. Then
a−1ab = a−1 · 0, that is, b = 0. �

Definition 3. Let R be a nonzero commutative ring. Set

R∗ = {x ∈ R | x is invertible }
and

R• = {x ∈ R | x is entire }.

Problem 5. Let R be a nonzero commutative ring. Show that R∗ is an abelian
group under multiplication.

Solution. By (R5), R∗ is associative. Since 1 is invertible, 1 ∈ R∗. Since (a−1)−1 =
a, a is closed under inverses. Finally, (ab)−1 = b−1a−1, which shows that R∗ is
closed under multiplication. �

Definition 4. Let R be a nonzero commutative ring.
We say that R is an integral domain if every nonzero element of R is entire.
We say that R is a field if every nonzero element of R is invertible.

Problem 6. Let R be a commutative ring. Show that if R is a field, then R is an
integral domain.

Solution. Let a ∈ R be nonzero. Then a is invertible, so a is entire by Problem 4.
Thus R is a domain. �
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Problem 7. Let R be a finite integral domain. Show that R is a field.

Solution. Let a ∈ Rr {0} and define a function

µa : R→ R given by µa(x) = ax.

We claim that µa is surjective. To see this, suppose that µa(x1) = µa(x2). By
definition of µa, we have ax12 = ax2. Since a is entire, it is cancellable, so x1 = x2.
Thus µa is injective. An injective function from a finite set to itself is necessarily
surjective, so µa is surjective. Thus there exists b ∈ R such that µa(b) = 1; that is,
ab = 1. Thus b is the inverse of a, and a is invertible. There, R is a field. �

4. Divisibility

Definition 5. Let R be a commutative ring and let a, b ∈ R.
We say that a divides b, and write a | b, if there exists c ∈ R such that b = ac.

Otherwise we write a - b.

Definition 6. Let R be a commutative ring and let a, b ∈ R•.
We say that a and b are associates, and write a ∼ b, if a | b and b | a.

Problem 8. Let R be a commutative ring and let a, b ∈ R•. Show that a ∼ b if
and only if there exists an invertible element u ∈ R such that b = ua.

Solution. Suppose that a ∼ b. Then a | b and b | a, which says that b = ax and
a = by for some x, y ∈ R. Substitute to get b = bax. Since b is entire, 1 = ax, so a
is invertible. Let u = a and commute to get ua = 1.

On the other hand, suppose that b = ua for some u ∈ R∗. Then a | b, and since
a = u−1b, we also have that b | a. Thus a ∼ b. �

Problem 9. Let R be a commutative ring. Show that ∼ is an equivalence relation
on R•.

Solution. We use Problem 8.
Reflexive: Since a = 1 · a, b ∼ b.
Symmetric: Suppose a ∼ b. Then b = ua for some u ∈ R∗. Then u−1 ∈ R∗,

and a = u−1b. Thus b ∼ a.
Transitive: Suppose a ∼ b and b ∼ c. Then b = ua and c = vb for some

u, v ∈ R∗. Substitution gives c = vua. Since vu ∈ R∗, a ∼ c. �
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Problem 10. Let R be a commutative ring and let a, b ∈ R•.

(a) Show that bR ⊂ aR if and only if a | b.
(b) Show that bR = aR if and only if a ∼ b.
(c) Show that abR ⊂ aR ∩ bR.
(d) Give an example where abR 6= aR ∩ bR.

Solution. We prove four parts.
(a) Suppose bR ⊂ aR. Since 1 ∈ R, b = b · 1 ∈ bR. Thus b ∈ aR, so b = ar for

some r ∈ R. Thus a | b.
One the other hand, suppose that a | b, and let z ∈ bR. Then z = by for some

y ∈ R. Since a | b, b = ax for some x ∈ R. Substitution gives z = axy, so z ∈ aR.
Thus bR ⊂ aR.

(b) Clearly,

bR = aR⇔ bR ⊂ aR and aR ⊂ bR⇔ a | b and b | a⇔ a ∼ b.
(c) Let z ∈ abR. Then z = abr for some r ∈ R. Thus z = a(br) ∈ aR and

z = b(ar) ∈ bR, so z ∈ aR ∩ bR.
(d) Note that 12Z is a proper subset of 2Z ∩ 3Z. �

Definition 7. Let R be a commutative ring and let p ∈ R• rR∗.
We say that p is irreducible if whenever p = ab, then either a is invertible or b is

invertible.
We say that p is prime if whenever p | ab, then either p | a or p | b.

Problem 11. Let D an integral domain and let p ∈ D.
Show that if p is prime, then p is irreducible.

Solution. Suppose that p is prime, and that p = ab for some a, b ∈ R. We see that
p | ab, and since p is prime, p | a or p | b.

Suppose that p | a. Then a = px for some x ∈ R, so p = pxb. By cancellation,
1 = xb, so b is invertible. Similarly, if p | b, we will get that a is invertible. �

5. Subrings

Definition 8. Let R be a ring. A subring of R is a subset S ⊂ R such that

(S0) 1 ∈ S;
(S1) a, b ∈ S ⇒ a+ b ∈ S;
(S2) a ∈ S ⇒ −a ∈ S;
(S3) a, b ∈ S ⇒ ab ∈ S.

If S is a subring of R, we write S ≤ R.

Problem 12. Let F be a field and let R ≤ F . Show that R is an integral domain.

Solution. Let a ∈ R, and suppose that ab = 0 for some b ∈ R. Then b = a−1 ·0 = 0,
so b is entire. Thus R is an integral domain. �

6. Ring Homomorphisms

Definition 9. Let R and S be rings. A ring homomorphism from R to S is a
function φ : R→ S such that
(H0) φ(1R) = 1S ;
(H1) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R;
(H2) φ(ab) = φ(a)φ(b) for all a, b ∈ R.
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A bijective ring homomorphism is called a ring isomorphism. If there exists a
ring isomorphism from R to S we say that R and S are isomorphic, and write
R ∼= S.

An isomorphism from a ring onto itself is called a ring automorphism.

Note that property (H1) says that φ is an additive group homomorphism.

Problem 13. Let φ : R→ S be a ring homomorphism.
(a) Show that φ(0R) = 0S .
(b) Show that φ(−r) = −φ(r) for every r ∈ R.

Solution. For part (a), we write φ(0R) = φ(0R + 0R) = φ(0R) + φ(0R). Subtract
φ(0R) from both sides, and switch the sides, to get φ(0R) + φ(0R) − φ(0R) =
φ(0R)− φ(0R), whence φ(0R) + 0S = 0S , so φ(0R) = 0S .

For part (b), we note that φ(r) + φ(−r) = φ(r − r) = φ(0R) = 0S ; thus, φ(−r)
is the unique additive inverse of φ(r), that is to say, φ(−r) = −φ(r). �

Problem 14. Let φ : R→ S be a ring homomorphism with S nonzero.
Show that if r ∈ R is invertible, then φ(r) is invertible and φ(r−1) = φ(r)−1.

Solution. Suppose that r is invertible. Now φ(r) · φ(r−1) = φ(rr−1) = φ(1R) = 1S
by (H0); thus φ(r−1) is the multiplicative inverse of φ(r) in S; that is to say,
φ(r−1) = φ(r)−1. �

Problem 15. Let φ : R→ S be a ring homomorphism and let T ≤ R.
Show that φ(T ) ≤ S.

Solution. To prove that something is a subring, we show properties (S0), (S1),
(S2), and (S3).

(S0) By (S0), 1R ∈ T . By (H0), φ(1R) = 1S , so 1S ∈ φ(T ).
(S1) Let s1, s2 ∈ φ(T ). Then s1 = t1 and s2 = t2 for some t1, t2 ∈ T . Since T

is a subring, t1 + t2 ∈ T , so s1 + s2 = φ(t1) + φ(t2) = φ(t1 + t2) ∈ φ(T ).
(S2) Let s ∈ φ(T ). Then s = φ(t) for some t ∈ T . Since T is a subring, −t ∈ T ,

so −s = −φ(t) = φ(−t) ∈ φ(T ).
(S3) Let s1, s2 ∈ φ(T ). Then s1 = t1 and s2 = t2 for some t1, t2 ∈ T . Since T

is a subring, t1t2 ∈ T , so s1s2 = φ(t1) · φ(t2) = φ(t1t2) ∈ φ(T ). �

Problem 16. Let φ : R→ S and ψ : S → T be ring homomorphisms.
Show that ψ ◦ φ : R→ T is a ring homomorphism.

Proof. To show that something is a ring homomorphism, we show (H0), (H1),
and (H2).

(H0) ψ ◦ φ(1R) = ψ(φ(1R)) = ψ(1S) = 1T .
(H1) Let r1, r2 ∈ R. Then

ψ◦φ(r1+r2) = ψ(φ(r1+r2)) = ψ(φ(r1)+φ(r2)) = φ(φ(r1))+φ(ψ(r2)) = φ◦ψ(r1)+φ◦ψ(r2).

(H2) Let r1, r2 ∈ R. Then

ψ ◦ φ(r1r2) = ψ(φ(r1r2)) = ψ(φ(r1) · φ(r2)) = φ(φ(r1)) · φ(ψ(r2)) = φ ◦ ψ(r1) · φ ◦ ψ(r2).

�
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Problem 17. Let φ : F → S be a ring homomorphism, where F is a field and S
is nonzero. Show that φ is injective.

Solution. Let x ∈ F be nonzero. By Problem , φ(x) is invertible in S. Since S is
nonzero, x 6= 0. So the only member of F which maps to zero is zero.

Let x1, x2 ∈ F , and suppose that φ(x1) = φ(x2). Then φ(x1) − φ(x2) = 0, so
φ(x1 − x2) = 0, which indicates that x1 − x2 = 0; hence, x1 = x2. Therefore, φ is
injective. �

Thus the image of F in S is a subfield of S which is isomorphic to F .

7. Ideals

Definition 10. Let R be a commutative ring. An ideal of R is a subset I ⊂ R
such that

(I1) a, b ∈ I ⇒ a+ b ∈ I;
(I2) a ∈ I ⇒ ar ∈ I.

If I is an ideal of R, we write I / R.

Since −1 ∈ R, properties (I1) and (I2) say that I is an additive subgroup of R.
It is easy to see that {0} / R and R / R.

Definition 11. Let R be a ring and let I / R.
We say that I is improper if I = R; otherwise I is proper.
We say that I is trivial if I = {0}; otherwise I is nontrivial.
We say that R is simple if I / R⇒ I = {0} or I = R.

Problem 18. Let R be a ring and I / R. Show that if I contains an invertible
element, then I is improper.

Problem 19. Let R be a commutative ring. Show that R is simple if and only if
R is a field.

Problem 20. Let R be a ring and let I, J / R. Show that I ∩ J / R.

Problem 21. Let R be a ring and let I, J / R. Set

I + J = {a+ b | a ∈ I, b ∈ J}.
Show that I + J / R.

Definition 12. Let φ : R → S be a ring homomorphism. The kernel of φ is
denoted by ker(φ) and is defined to be the subset of R given by

ker(φ) = {r ∈ R | φ(r) = 0S}.

Problem 22. Let φ : R→ S be a ring homomorphism.
Show that ker(φ) / R.

Problem 23. Let φ : R→ S be a ring homomorphism.
Show that φ is injective if and only if ker(φ) = {0}.

Problem 24. Let φ : R→ S be a surjective ring homomorphism and let I / R.
Show that φ(I) / R.

Problem 25. Give an example of a nonsurjective ring homomophism φ : R → S
and an ideal I / R such that φ(I) is not an ideal in S.
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8. Factor Rings

Definition 13. Let R be a ring and let I / R. Let x ∈ R. The coset for x of I in
R is the set

x+ I = {x+ a | a ∈ I}.
Let x, y ∈ R. We say that x and y are congruent modulo I, and write x ≡ y

mod I, if x− y ∈ I.
Let R/I denote the set of all cosets of I in R. The index of I in R is [R : I] =

|R/I|.

Ideals are additive normal subgroups. Thus cosets in ring theory are a special
case of cosets for groups under addition.

Let R be a commutative ring and let I /R. From the theory of groups, we know
that an equivalent condition for congruence is x+ I = y+ I ⇔ x− y ∈ I, and that
congruence modulo I is an equivalence relation on R. The cosets partition R into
blocks of equal size. If R is finite, then |R| = |R/I|[R : I]. Moreover, we know that
addition on R/I, given by

(x+ I) + (y + I) = (x+ y) + I,

is well-defined, and endows R/I with the structure of an additive group. The ideal
condition (I2) is the necessary extra condition which ensures that multiplication,
defined by

(x+ I) · (y + I) = xy + I,

is also well-defined, and produces a ring structure on R/I. We call R/I a factor
ring of R by I.

Define a function β : R→ R/I by β(x) = x+ I. Show that β is a surjective ring
homomorphism whose kernel is I. We call β the canonical homomorphism from R
to R/I. Thus every kernel is an ideal and every ideal is a kernel.
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9. Isomorphism Theorem

Problem 26. (Isomorphism Theorem)
Let φ : R→ S be a ring homomorphism and let K = ker(φ). Let β : R→ R/K be
the canonical homomorphism. Define a function φ : R/K → S by φ(x+K) = φ(x).

(a) Show that φ is well-defined.
(b) Show that φ is an injective ring homomorphism.
(c) Show that φ = φ ◦ β.
(d) Show that if φ is surjective, then φ is a ring isomorphism.

Remark 1. Thus every homomorphic image of R is isomorphic to a quotient of
R, and every quotient of R is a homomorphic image of R.

Problem 27. Let R be a ring and let I, J/R such that I ⊂ J . Let β : R→ R/I and
α : R→ R/J be the canonical homomorphisms. Set J/I = {a+ I ∈ R/I | a ∈ J}.
Define γ : R/I → R/J by γ(a+ I) = a+ J .

(a) Show that γ is a well-defined surjective ring homomorphism.
(b) Show that α = γ ◦ β.
(c) Show that J/I / R/I.
(d) Show that

R

J
∼=
R/I

J/I
.

Problem 28. (Correspondence Theorem)
Let φ : R→ S be a surjective ring homomorphism and let K = ker(φ). Set

I = {I / R | K ⊂ I} and J = {J / S}.
Define a function

Φ : I→ J by Φ(I) = φ(I).

(a) Show that Φ is bijective.
(b) Show that I1 ⊂ I2 ⇔ Φ(I1) ⊂ Φ(I2).

Remark 2. Thus the ideals in the range of a ring homomorphism correspond to
the ideals in the domain which contain the kernel. This correspondence is inclusion
preserving. Via the isomormorphism theorem, this is equivalent to the fact that
the ideals in R which contain I correspond to the ideals in R/I.

Problem 29. (Chinese Remainder Theorem)
Let R be a commutative ring and let I, J / R such that I + J = R.
Define a function φ : R→ R/I ×R/J by φ(r) = (r + I, r + J).

(a) Show that for every a ∈ R there exist x, y ∈ R such that x ≡ a mod I and
y ≡ a mod J .

(b) Show the φ is a surjective homomorphism with kernel I ∩ J .

(c) Conclude that
R/(I ∩ J) ∼= R/I ×R/J.
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10. Polynomial Rings

Definition 14. Let R be a commutative ring. A polynomial over R with indeter-
minate X is an expression of the form

f(X) = a0 + a1X + · · ·+ anX
n =

n∑
i=0

aiX
i,

where ai ∈ R for i = 0, 1, . . . , n, and an 6= 0. The degree of f is n. The ai’s are
called coefficients. The leading coefficient is an. The constant coefficient is a0.

Let f and g be polynomials over R.
Define polynomial addition by

(f + g)(X) =

d∑
i=0

(ai + bi)X
i,

where ai = 0 if i > m, bi = 0 if i > n, and d is the largest integer i less than or
equal to max{m,n} such that ai + bi 6= 0.

Define polynomial multiplication by

(fg)(X) =
d∑

i=0

ciX
i,

where ai = 0 if i > m, bi = 0 if i > n,

ci =

i∑
j=0

ajbi−j ,

and d is the largest integer less than or equal to m+ n such that ci 6= 0.

Problem 30. Let R be a commutative ring, and let R[X] denote the set of all
polynomials over R. Verify that R[X], together with polynomial addition and
multiplication as defined above, is a ring.

Definition 15. Let R be a commutative ring and let f ∈ R[X]. Then

f(X) =

n∑
i=0

aiX
i

for some ai ∈ R.
Let x ∈ R. The evaluation of f at x is

f(x) =

n∑
i=0

aix
i.

This induces a function, which we also denote by f , defined by

f : R→ R given by f(x) =

n∑
i=0

aix
i.

Let r ∈ R. The evaluation map induced by r is

ψr : R[X]→ R given by ψr(f) = f(r).

Problem 31. Let R be a commutative ring and let r ∈ R. Let f, g ∈ R[X].

(a) Show that ψr(f + g) = ψr(f) + ψr(g).
(b) Show that ψr(fg) = ψr(f) · ψr(g).
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11. Polynomial Division

Proposition 1. (The Division Algorithm for Polynomial)
Let F be a field and let f, g ∈ F [X]. Then there exist q, r ∈ F [X] such that

g = fq + r and deg(r) < deg(f).

Reason. We call r the remainder, q the quotient, f the divisor, and g the dividend.
Use long division to divide f into g. This process stops when the remainder is

of degree less than that of f . Let q be the quotient and let r be the remainder. �

We divide by a linear polynomial and use the division algorithm to show that
remainders are values of the dividend.

Proposition 2. (Remainder Theorem)
Let F be a field and let g ∈ F [X]. Let a ∈ F and set f(x) = x−a. Write g = fq+r
with deg(r) < deg(f). Then r ∈ F , and g(a) = r.

Proof. A polynomial of degree 0 is a constant, and since deg(r) < deg(f) = 1, we
see that deg(r) = 0, so r ∈ F . Thus g(x) = f(x)q(x) + r for every x ∈ F . Plug in
x = a to see that

g(a) = f(a)q(a) + r

= (a− a)q(a) + r because f(x) = (x− a)

= 0 · q(a) + r

= r

�

We provide the precise condition under which a linear polynomial is a factor of
another polynomial.

Proposition 3. (Factor Theorem)
Let F be a field and let g ∈ F [X]. Let a ∈ F and set f(x) = x− a. Then g(a) = 0
if and only if f | g.

Proof. We prove both directions of the implication.
(⇒) Suppose that g(a) = 0. Write g = fq + r with deg(r) < deg(f). By the

Remainder Theorem, r = g(a) = 0, so g = fq. Thus f | g.
(⇐) Suppose that f | g. Then g = fq for some q ∈ F [X], so g(a) = f(a)q(a) =

(a− a)q(a) = 0 · q(a) = 0. �

The Factor Theorem says that the zeros of g produce linear factors of g, and
vice versa. Thus in order to find the x-intercepts of a polynomial g, we factor it.
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12. Polynomial Quotient Rings

Definition 16. Let F be a field and let f, g, h ∈ F [X]. We say that g is congruent
to h modulo f , and write g ≡ h (mod f), if f divides g − h; that is,

g ≡ h (mod f) ⇔ f | (g − h).

Proposition 4. Let F be a field and let f ∈ F [x] with deg(f) > 0. Then congruence
modulo f is an equivalence relation.

Proof. We wish to show that the relation is reflexive, symmetric, and transitive.
(Reflexive) Let g ∈ F [X]. Then (g− g) · 0 = 0 = f · 0, so f | (g− g). Thus g ≡ g.
(Symmetric) Let g, h ∈ F [X] such that g ≡ h. Then f | h− g, so g − h = fq for

some q ∈ F [X]. So h− g = f(−q), which shows that f | g − h, so h ≡ g.
(Transitive) Let g, h, k ∈ F [X] such that g ≡ h and h ≡ k. Then f | h − g and

f | k − h. Thus h − g = fq1 and k − h = fq2 for some q1, q1 ∈ F [X]. But then
h = g + fq1, and plugging this into the second equation gives k − (g + fq1) = fq2.
After some algebra, k − g = f(q1 + q2), so f | (k − g). Therefore, g ≡ k.f �

Since congruence is an equivalence relation on F [X], it partition F [X] into equiv-

alence classes. For g ∈ F [X], let g denote the equivalence class of g, and let F [X]

denote the set of all equivalence classes. Define addition and multiplication on F [X]
by

g + h = g + h and g · h = gh.

One can show that these operations are well defined, and satisfy the properties that
promote F [X] to a commutative ring.

Definition 17. Let F be a field and let f ∈ F [X]. The ring of polynomials over

F modulo f is F [X].
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